翻訳と辞書 |
Hodge–Tate representation : ウィキペディア英語版 | Hodge–Tate module
In mathematics, a Hodge–Tate module is an analogue of a Hodge structure over p-adic fields. introduced and named Hodge–Tate structures using the results of on p-divisible groups. ==Definition==
Suppose that ''G'' is the absolute Galois group of a ''p''-adic field ''K''. Then ''G'' has a canonical cyclotomic character χ given by its action on the ''p''th power roots of unity. Let ''C'' be the completion of the algebraic closure of ''K''. Then a finite-dimensional vector space over ''C'' with a semi-linear action of the Galois group ''G'' is said to be of Hodge–Tate type if it is generated by the eigenvectors of integral powers of χ.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Hodge–Tate module」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|